
There are loops in every programming language. These help you do certain things over and over again.

In Pocket Code, for example, there is the "Repeat" brick, which helps you to execute your code more often.

Repeat X times executes your code exactly X times within the loop (until the end of the loop), because with larger numbers 
it becomes very long-winded to copy the code over and over again (imagine you want to execute something 100 times) .

Loops

This is the beginning of the loop, also called the loop 
head. There you specify how often this loop should 
be executed.

That's the end of the loop. This is automatically 
created for you in Pocket Code.

This is where you paste your code.
This will then be carried out as often as you 

specify in the loop head.

These two scripts do exactly the same thing. 
Once with a loop and once without.



Queries help to only execute certain parts of your script if a condition is true.

If the queried is true, the code in between is executed - if it is not, this part is simply skipped.

If you need 50 points in a test to pass, you have to check how many points have been achieved and can than determine
whether the test was passed or not.

Query (If)

Here you specify what the condition for executing 
the code is.

That is the end of the query. This is automatically 
created for you in Pocket Code. A jump is made here 
if the query is false. What comes next is always done, 
regardless of whether the query condition is met or 
not.

This is where you paste your code.
This is only carried out if the condition is 

true.

After the query, the code branches. If that in the 
diamond (the query) is correct, the right path is 
chosen - if it is not correct, it continues without 
detours.

Points > 50?

You did it!

This is always done.

Yes

No



In contrast to the normal if-query, something is done here if the query is not fulfilled. Otherwise it works exactly the same.

Query (If - Else)

This part of the script is executed when the 
query condition is true.

These two scripts do exactly the same thing. Left with a combined if-else 
query and right with two if queries.

This part of the script is executed when the 
query condition is NOT true.

Points > 50?

You did it!

This is always done.

YesNo

Sorry not passed :(
There are two different paths to the if-
else query - the query condition 
decides which path is taken.



There are variables in every programming language. These help to save certain things and values and allow to change and 
retrieve them at any time.

Unlike a fixed number, as the name suggests, a variable is variable. This means that it can be changed at any time.

How to create variables and work with your variables in Pocket Code:

VARIABLES (create & use)

This is how you increase a variable (new value = 
value that was saved before + fixed value).

You can find everything about variables in the 
pink/red area data.

To create a new variable or to work with an 
existing one, press the little arrow in your 
selected pink/red block.

There you can choose whether you want to 
create a new variable (press new ...) or use an 
existing variable

This is how you give a variable a fixed value.

This is how you decrease a variable (new value = 
value that was saved before - fixed value).



You may have noticed that when you create a new variable, Pocket Code not only asks you for the name the variable should 
have, you also have to select whether the variable is “for all actors, objects and clones in all scenes” or “only for this actor, 
this object or one of its clones only”.

This is about visibility. So you have to decide whether the variable is only visible for this object (i.e. a charater or something 
similar) or for the whole project (your whole game) and can therefore also be edited.

In this context global means: visible everywhere in your project and local: only visible in your object / charater

VARIABLES (local & global)

Your Project

Object 1

Object 4

Object 2

Object 3

Points

Points

Record

red Variable: local
green Variable: global

Time

The Record variable can be 
accessed from all objects

To the variable Time only in object 4

In the variable Points, other values 
can be stored in objects 1 and 3, as 
these are independent and invisible 
from one another and can therefore 
also have the same names


